ROLE OF ULTRASOUND IN RETINOPATHY OF PREMATURITY: A CASE REPORT

Khaladkar SM, Kotkar R, Kulkarni A, Joshi A

Deenanath Mangeshkar Hospital and research centre, Maharashtra, India

DOI: http://doi.org/10.4038/sljr.v3i1.43

Keywords: Retinopathy of prematurity, retrolental fibroplasia, leukokoria, prematurity, high oxygen therapy

Introduction

Retinopathy of prematurity (ROP) is a cause of leucokoria. Other causes of white pupil are congenital cataract, retinoblastoma and pseudoglioma. ROP is also known as Terry syndrome and was previously known as retrolental fibroplasia (RLF). It is an ocular disorder affecting prematurely born babies who have received oxygen therapy as intensive neonatal care for underdeveloped lungs. It is caused by disorganized growth of retinal blood vessels which subsequently leads to scarring and retinal detachment. Both hypoxia and oxygen toxicity contribute to the development of ROP.

Case Report

A 7 month old female infant was referred for orbital ultrasound (USG) with a history of bilateral diminution of vision. She did not make eye contact and there was leukokoria on examination. There was a history of premature delivery at 30 weeks with oxygen therapy. USG of both orbits was performed with high resolution linear probe (7-12 MHz). Axial length of both eye balls was 10 mm. Approximately 11mm x 5 mm well-defined echogenic lesion was noted in the anterior vitreous in the retrolental region in both eye balls containing a few cystic components with no calcification or vascularity. No retinal detachment was seen in either eye ball (Fig 1, 2). There was no evidence of primitive hyperplastic persistent vitreous (PHPV). A diagnosis of retinopathy of prematurity Stage 3 was made. The patient underwent lensectomy, vitrectomy and membranectomy on both sides.

Corresponding Author: Khaladkar SM <drsanjaym.khaladkar@gmail.com>

https://orcid.org/0000-0001-6415-5368

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution and reproduction in any medium provided the original author and source are credited.
Discussion

Low birth weight, low gestational age and prolonged exposure to supplementary oxygen therapy following delivery are associated with ROP. ROP develops in 16% of all premature births, 60% of infants with birth weight of less than 1500g and 65% if the birth weight is less than 1250g. Respiratory distress and intraventricular hemorrhage are predictive of the development of ROP. ROP occurs in extremely low birth weight infants in high income countries, with declining incidence in last few decades. Due to high rates of premature birth and increasing resuscitation of premature infants with suboptimal standards of care, a third epidemic of ROP has ensued in middle income countries. Its incidence can decrease with better understanding of screening and management of these patients.

Foetal retina begins to develop vascularization by 13th to 17th weeks of pregnancy. ROP develops if the blood vessels grow and branch abnormally with development of fibrous tissue along the new vessels which is called fibrovascular proliferation. Retinal detachment occurs on contraction of fibrous tissue.

Patients with ROP are at a greater risk of developing refractive errors, cataract, glaucoma, strabismus, amblyopia, myopia, retinal detachment and blindness in later life. Hence, early detection of ROP is a must to prevent, diagnose and treat these conditions. All infant with gestational age of 31 weeks or less regardless of birth weight, birth weight of 1250g or less and premature babies with severe illnesses in the perinatal period should be screened for ROP.

Stages of ROP on fundoscopy are based on findings at the junction between the vascularised and avascular retina. Stage 1: a faint demarcation line, Stage 2: an elevated ridge, Stage 3: extra retinal fibrovascular tissue, Stage 4: subtotal retinal detachment and Stage 5: total retinal detachment.

On USG, ROP is bilateral and often asymmetric. Eye balls are normal in size. There is formation of retrolental medium level echogenic mass with occasional calcification in anterior vitreous in stage 3 disease with clear space between the mass and retina or empty vitreal space. Shrinkage of ocular axis is not a feature. Retinal detachment is seen in stage 4 and 5 disease.

USG in our case referred for bilateral leucokoria showed bilateral retrolental echogenic lesions with cystic components and clear space between the lesion and retina with no calcification or vascularity.
Above features ruled out PHPV and retinoblastoma. There was no evidence of retinal detachment on either side. These features helped in diagnosing stage three disease of ROP which was useful in management and prognostification. Bilateral lensectomy, vitrectomy and membranectomy was offered.

Treatment options are peripheral retinal ablation by laser photocoagulation, cryotherapy, intra-vitreal injection of avastin, vitrectomy for stage 4 and 5 ROP and scleral buckling. Oral propranolol has been shown to reduce progression of ROP.

Differential diagnoses include persistent hyperplastic primary vitreous (PHPV) which is typically unilateral and occurs in term babies and familial exudative vitreous retinopathy a genetic disorder that disrupts retinal vascularization in full term infants.

**Take home message:**

This case supports the literature on the need of screening premature and low birth weight babies having prolonged exposure to supplementary oxygen therapy following delivery to avoid development of future complications such as blindness, using B scan USG as it can detect retinal detachment with ROP.

**References.**